Contribution from the Department of Chemistry and Materials Research Center Northwestern University, Evanston, Illinois 60201, U.S.A.

Carbon and Oxygen Coordinated Carbon Monoxide. Preparation and Structure of $[(h^3-C_5H_5)Fe(CO)_2]_2$.2Al(C₂H₅)₃

N.E. Kim,¹ N.J. Nelson, and D.F. Shriver

Received August 11, 1972

The interaction $of[(h^5-C_5H_5)Fe(CO)_2]_2$ with [Al- $(C_2H_5)_3]_2$ in hydrocarbon solution produces a 1:1 adduct which may be isolated as air-sensitive red chystals. Adduct formation is accompanied by a 112 cm^{-1} reduction in the asymmetric stretching frequency of the bridging carbonyls. Infrared, molecular weight and nmr data indicate that the adduct is partially dissociated in hydrocarbon solution. By means of xray single crystal diffraction the compound was found to crystallize in space group C2/c with four molecules in a unit cell of dimensions a = 14.45(2), b = 14.12-(2), c = 14.70(3) Å, and $\beta = 100^{\circ} 50(15)'$. The structure was refined to a convential R factor of 12% over 815 reflections collected on film. The structure involves a $cis[(h^5-C_5H_5)Fe(CO)_2]_2$ moiety cordinated to two trithylaluminum acceptors through the oxygen of each bridging carbonyl. The Al-O bond distance is 1.98 Å.

Introduction

Since the x-ray diffraction structure determination of Fe₂(CO)₉ by Powell and Ewens in 1939² it has been recognized that metal carbonyls may contain metal-

carbon bridging CO groups, M > CO. The possibility

of bridging through both carbon and oxygen has been discussed by various authors,³⁻⁵ but the first definitive report of this phenomenon appeared only recently in a preliminary communication of the present work.⁶ This research on the basicity of the bridging carbonyl group was prompted by analogy⁴ with ketones which are well known Lewis bases.

Experimental Section

Preparations. Schlenk, syringe, dry-box and vacu-

um-line techniques⁷ were used to exclude air in the preparation and handling of $[(h^5-C_5H_5)Fe(CO)_2]_2 \cdot 2Al$ - $(C_2H_5)_3$. In a typical preparation, 2.5 g (7.06 mmole) of pure $[(h^5-C_5H_5)Fe(CO)_2]_2^8$ was degassed in a Schlenk tube, and 100 ml of thoroughly dry and oxygen-free toluene was added under nitrogen. To this suspension 2.1 ml of $Al(C_2H_5)_{3,1}(15 \text{ mmole})$ was added followed by stirring overnight. Removal of solvent under vacuum left a thick liquid to which 300 ml of dried and degassed heptane was added. After stirring for 30 minutes, the fine bright red crystals which formed were collected under nitrogen, washed with three 50 ml portions of dried and degassed hexane, and dried by brief exposure to vacuum. Anal. Calcd. for C₂₆H₄₀-Al₂Fe₂O₆: C₂H₆, 28.22; Fe, 19.2 Found: C₂H₆, 28.64; Fe, 20.5. Ethane was determined by hydrolysis⁹ and iron was determined poteniometrically with cerium(IV) sulfate.¹⁰ The molecular weight in benzene solution varied with concentration: 428 for 1.72 mg sample/g benzene, 475 for 4.17 mg sample/g benzene and 505 for 5.67 mg sample/g benzene; (Calcd. 582). The density of the crystal determined on the vacuum line by He displacement is 1.31 g cm^{-3} . In the presence of excess triethylaluminum infrared absorptions are found at 2042s, 2004s and 1682s cm⁻¹ for freshly prepared heptane solutions at -3° . In the absence of excess triethylaluminum, a more complex spectrum is observed, indicating significant dissociation. The nmr spectrum which also is somewhat concentration dependent is τ 5.62 (singlet) 8.43 (triplet) and 9.51 (quartet) with relative intensities 9.6: 18: 13.1; in reasonable agreement with the expected ratios of 10:18: 12 for C₂H₅, CH₃ and CH₂ respectively.

Crystallography. A crystal of the adduct in a quartz capillary was examined by Weissenberg and procession x-ray photographs, and found to have monoclinic symmetry with a = 14.45(2), b = 14.12(2), c = 14.70-(3) Å, and $\beta = 100^{\circ} 50(15)'$. Systematic absences of hkl, h + k \neq 2n and h0l, l \neq 2n, is consistent with space group C2/c or Cc. The presence of a large number of Harker peaks for the 2x, 0, 1/2 + 2z plane in the three-dimensional Patterson function indicate the centrosymmetric space group C2/c. From the

Formerly N.E. Kime.
 H.M. Powell and R.V.G. Ewens, J. Chem. Soc., 286 (1939).
 N.V. Sidgwick and R.W. Bailey, Proc. Roy. Soc., A 144, 521 (1934); R.V.G. Ewcns and M.W. Lister, Trans. Faraday Soc., 35, 681 (1939).
 C.C. Barraclough, J. Lewis, and R.S. Nyholm, J. Chem. Soc., 2582 (1961); G. Dobson and R.K. Scheline, Inorg. Chem., 2, 1313 (1963).
 G.W. Parshall, J. Amer. Chem. Soc., 86, 361 (1964); K.F. Purcell, *ibid.*, 91, 3487 (1969).
 N.J. Nelson, N.E. Klme, and D.F. Shriver, J. Amer. Chem. Soc., 91, 5173 (1969).

⁽⁷⁾ D.F. Shriver, « The Manipulation of Air-Sensitive Compounds », McGraw Hill Book Company, New York, N.Y., 1969.
(8) T.S. Piper, F.A. Cotton, and G. Wilkinson, J. Inorg. Nucl. Chem., 1, 165 (1955).
(9) Ref. 7, page 81.
(10) D.A. Skoog and D.M. West, « Fundamentals of Analytical Chemistry », Holt, Rinhart, and Winston, New York, N.Y., 1963, page 451.

Table I. Final Atomic and Thermal Parameters.

Atom 4	• X	Y	Z	$10^4\beta_{11}$ or B	10 ⁴ β ₂₂	1 0 ⁴ β ₃₃	10 ⁴ β ₁₂	10 ' β,,	10 ₁ β ₂₃
Fe	0.0167(2)	0.1699(2)		50(2)	49(2)	45(2)	2(3)	5(1)	0(2)
A 1	0.2913(6)	0.1213(6)	0.3069(7)	73(7)	114(8)	98(8)	30(6)	28(6)	6(6)
C_1	0.0916(19)	0.1999(19)	-0.0343(19)	7.2(8)					
C_2		0.2106(19)	-0.0343(18)	6.3(7)					
C,		0.2842(18)	0.0985(19)	6.1(7)					
C,	0.0455(18)	0.3134(19)	-0.1315(17)	5.9(7)					
C,	0.1201(20)	0.2585(20)	-0.0899(21)	7.5(8)					
C.	0.0976(16)	0.1534(15)	-0.2492(15)	4.3(5)					
O۵	0.1798(11)	0.1413(10)	-0.2493(10)	5.6(4)					
C,	0.0202(17)	0.0526(17)	-0.1370(15)	4.4(6)					
O,	0.0203(12)	-0.0304(13)	-0.1235(11)	7.1(5)					
Cu	0.3680(20)	0.0368(19)	-0.2184(21)	7.6(8)					
C12	0.4231(27)	0.0799(25)	-0.1314(27)	11.9(12)					
C ₂₁	0.3233(25)	0.2476(24)	-0.3323(27)	11.3(11)					
C22	0.3299(22)	0.3138(26)	-0.2582(24)	10.5(10)					
C ₃₁	0.2223(28)	0.0407(27)	-0.4170(29)	12.4(12)					
C12	0.2661(36)	0.0183(35)	-0.4793(36)	16.5(16)					

^a X, Y and Z are the fractional coordinates. The form of the thermal ellipsoid is $exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l_2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}h]$ kl)]. Standard deviations of the least significant figures are reported in parentheses. C_{11} , C_{21} and C_{31} are the three methylene carbons attached to Al. C_{12} , C_{22} and C_{32} are the methyl carbons associated with the respective methylene carbons, and C_{1} through C₅ are carbons of the cyclopentadienyl group. The molecule possesses 2 symmetry.

Table II. Bond Lenghts and Angles 4.

Atoms ^a	Length Å	Atoms ^a	Angle, deg
Fe-Fe	2.491(8)	Fe-C ₁ -O ₁	176(2)
Fe-C ₁	2.05(3)	Fe-C _b -O _b	139(2)
		Fe-Fe'-C	102.5(8)
Fe-C₂	2.08(3)	Сь- О ь- А 1	155(2)
Fe-C ₃	2.10(3)	Ob-Al-Cit	102(1)
Fe-C₄	2.10(3)	O _b -Al-C ₂₁	101(1)
Fe-Cs	2.09(3)	O _b -Al-C ₃₁	96(1)
Fe-C _b	1.88(2)		
Fe-C	1.70(2)	Fe-C _b -Fe': Fe-C _b '-Fe' ^b	167(1)
Cb-Ob	1.20(2)		
C _t -O _t	1.19(2)		
Al-O _b	1.98(2)		
$C_1 - C_2$	1.43(3)		
$C_{r}C_{3}$	1.42(3)		
C₅C₄	1.43(3)		
$C_{5}-C_{1}$	1.28(3)		
Al-C ₁₁	1.95(3)		
C11-C12	1.50(4)		
Al-C ₂₁	1 .90(3)		
C21-C22	1.42(4)		
Al-C ₃₁	2.07(4)		
C31-C32	1.25(5)		

^a See Figure 1 and footnotes to Table I for numbering scheme. ^b Dihedral angle between the Fe-C_b-Fe' and Fe-C_b'-Fe' planes.

observed denisty of 1.31 g cm⁻³, Z equals 4 (ρ_{calc} = 1.31 g cm⁻³).

Data Collection and Reduction. A crystal of approximately cubic habit, $0.1 \times 0.1 \times 0.08 \text{ mm}^3$, was mounted along its [110] axis in a quartz capillary. Six layers of equi-inclination Weissenberg photographs were taken at room temperature using Zr filtered MoK_{α} radiation. Intensities of the reflections were estimated visually and were corrected for Lorentz and polarization effects but not absorption since the linear absorption coefficient for MoK_{α} is 11 cm⁻¹. The data were interscaled by comparison of common reflections to yield structure amplitudes for 815 reflections.

Iron and aluminum positions were found in the Pat-

terson map and were used as trial coordinates for two cycles of least-squares refinement. A difference Fourier map then gave the positions of all remaining nonhydrogen atoms. These were included in further least-squares refinement using isotopic temperature factors.

Throughout the analysis, the atomic scattering factors used for Al, C and O were those tabulated by Ibers," and the scattering factors for Fe were those of Cromer and Waber.¹² Cromer's values were used for the anomalous dispersion terms 13 $\Delta f'$ and $\Delta f''. The$ function minimized in the least squares refinement was $\Sigma w(|F_o| - |F_c|)^2$. Anisotropic thermal parameters for Fe and Al were employed and hydrogen atoms were introduced as fixed contributions, with methyl hydrogens included in a ring to approximate a free rotor. Scattering factors for hydrogen were those of Stewart, et al.¹⁴ The final agreement factors for all reflections having $F > 2\sigma$ are $R_1 = \Sigma(||F_o| - F_o|) / \Sigma|F_o|$ = 0.12, and $R_2 = (\Sigma w (|F_o| - |F_c|)^2 / \Sigma F_o^2)^{1/2} = 0.12$, where $|F_o|$ and $|F_c|$ are observed and calculated structure amplitudes respectively, and $w = 256/F_o^2$ for I > 16 and $w = I^2/F_0^2$ for $I \le 16$ with I being the raw intensity. Final atomic and thermal parameters are given in Table I, bond lengths and bond angles are given in Table II, and observed and calculated structure factors appear in Table III.

For most of the carbon atoms in the ethyl groups rather high thermal parameters are found. One methyl carbon in particular, C₃₂, has a very high temperature factor and at least one additional peak due to this carbon can be found in the difference Fourier. As with many compounds containing ethyl groups, disorder is indicated. From a consideration of the number of data points and parametrs, it was inadvisable to explore the nature of this disorder. Bond lengths associated with ethyl group 3 are to be disregarded.

⁽¹¹⁾ J.A. Ibers in « International Tables of X-ray Crystallography », vol. 3, The Kynoch Press, Birmingham. England, Table 3.3.1 A.
(12) D.T. Cromer and J.A. Waber, Acta Cryst., 18, 104 (1965).
(13) D.T. Cromer, *ibid.*, 17, 781 (1964).
(14) R.F. Stewart, E.R. Davidson, and W.T. Simpson, J. Chem. Phys., 42, 3175 (1965).

Table III. Observed and Calculated Structure Factors for $[(h^5C_3H_3)Fe(CO)_2]_2 \cdot 2Al(C_2H_3)_3$.

-	**	н ,	. FO	**	н L	Fu	#C	н L	. FD	+ C	. L	F0	rc .	H L	FO	#C	H L	FO	r c	4 L	FO	FC	H L	FO	FC.	H L	FO	₽C.	4 L	FO	FC
K .		-!	: :::	463	:	340		3 3	145¥ 670	1418 715	-1 3	349	324 240	-	405	***	-3 0 -3 1	97d 796	911 907	-6 5	25.e 3.e D	14¥ 27¥	33	572	015 J31	0 1 0 3	916 309	7#1 299	•••••	4 - 10	•••••
-10 2 139	0 1290 8 727	-1	· 267	430 521	:	930 769	491	1 1	***	385	-	1098	1059	-	520	*72	-		478	3 1	377	734	-1 0	594	248	0 9	572	551 526	-10	401	57.5
-10 57		3	7 1223	1476	Ξ.	5 529 5 436 5 106	489 991	11	720	682 939	-1 11	341	304	-	911	800 867 776	-> 7	283	3-0	-6 12	*32	د ۸د ۲۰۰۵	-1 2	314	325	0 7	307	105		420	439
- 120	1 1291	-; ,	5 544	3/8	ų.	438		: :	799	070 141	-1 10	324	310 1000	3 1	364	281	-5 11	318	323	4	984	679	-1 5	430 572	509	2 0	396	1244		416	416
-6 12 50	• \$01 • 227>	-?	2 742	75.5	•••••	K • 2	•••••	:;	549	66J		1164	10.7		296	370	-3 1	750	546		1041	1020	-1 1	361	778 444 397	2 2	460	484	-	1 601 3 312	457
	1 645 5 687	-;	A A50	434	-14	1 .75	304	• 11	288	356	1 :	1546	406		251	346	-	672	715	-2 1	1295	1282	11	893 569	902 >#0	: :	541	547	-	+10 342	184
-6 10 39	3 295	-3	7 1104	1010	-12	321	330	• 2 • 3	396	349	1 12	667 648	402	3	1086	454	-3 7	376	397	3 1	719	008 041	1 1	370	231		318	332		7 353	294
	1 914	-	1 97	592 342	-10	1 997 3 902	1022		439	417	11	302	224		2124	391	-1 1	1687	1731	21	762	660 537	1 1	246	132	: ;	725	788	-4	943 512	570
-2 2 73	3 806 8 2074	-;	3701	3360	-10	7 513	224	10	295	340		1600	1703		265	429	-1 3	293	190	-2 10	263 611 302	372		437 463 336	304 451 225	:;;	439	291		492 470	387
-2 10 54	·		5 570	346	-10	1 344		: :	541 641	547	5 12	46.5	411	0	491	510	-1 9	÷11 •73	444	0 0	2069	1890	1	240			278	298	0 1	909 2 308	453
0 10 66	7 924	-3	1470	1386	-	901	704	10 3	436	502		429	394	0 1	412	404	-1 13	392	335	0 3	1050	1010		653 662 390	585	1 10	334	170	0 1	401 505	264
2 0 102	1 2004	-	5 1120	1094		277	236	10	296	170	5 10	400	647 386	1	744	782	ii	1482	1319	0 10	521	572	; ;	353	60a 50a		• •	•••••	0 11	330	182
2 4 247	3 2661	4	7 930	10-	-	3 1152	204	10 11	291	102	7 4	419	1000 271 743	2 1	920	924	1	514 671	407	2 1	540	552	; ;	483	344		***	500 410		344	267
a 10 91	a 775	-1	12 384	400 11		7 483	495	12 3	414		7 10	435		2 1	355	201	1 10	437 366	427	11	887 987	#3. 91.	; ;	400		-1 -1	404	472	: :	357	275
* 2 35	7 364	-1	1	557	-	346	490	12 5	407	206	: :	360	332	:	403	734	1 12	375	269	11		483 298	* *	303	300	-5 1	748	#1> #2>	•••••	• 11	•••••
10 33	6 X36	i	4 63 7 35	420 410	-	: ;;;	376		• •		1 10	332	378	:	1006	881	1	644	484	: 1	421	345 5.0				-3 2	270	270	-3 (419	247
• 2 17 • • 202	1099	ţ	• • • • • •	423	-	5 1193 6 645	2.1	-13	401	319		294	290	•	409	439	3 4	558	563	::	1055	1160 647 - 716	10 2	315	129	-> 0	503	243 742	-3	427	590
6 6 30 6 10 37	7 376	į	13 35	117	-	1 7uz	742	-11	374	282	23	281	1.00	:	5 555	6-D	5 3	591	670	: :		384	-	393	38d 731	-3 1	293	347	-1 0	429	307
1 2 1	3 8.4	;	1 102	74.		1 357	• 24	-11 14	5+3 347	487	13 4	480	+14	1	308	-1-		434	481	10 0	671 419 367	673 520	-	324	304	-1 0	739	724	1	471 2V0	100
10 0 95	3 797	;	3 112	1035		1 492	629 275	-	265	347		•••	•••••	•	154 341	594	; ;	473 363	390 450		• •		- 8	374	307 399	-1 -1	525	770	1	401	417
10 6 39	354	į	110	1124		3 177	192	-;	494	473	-12	400	363	10	597	467	7 5	386	470 457 -	-11 1		472		335	420	-	275	167	3	300	351
10 10 40	1	÷	0 110	1044	3	1 13	364 757	-; ;	673 948	742	-10	473 519	444				; ;	372	*** 3	-? 3	354	306	: ;	594	426	1 0	374	1111	• •	506	414
-11 1 12	1 11	;	2 30	1039		470	484		701	717	-10	366	277	-11	-0-	423	11 2 	357	*03	-9 7	402	227	-	393	344		409	#20 335		· 12	247
-11 3 57	0 574 1 154	;	5 107	1051	-	3 304	257	-3	517	506	1	515	376	-9	417	471	-14 4	344	437	-1 -	245	490	- 7	356	334	1 10	441	521	-	275	384
	3 114	3	: ;;	110	3.	2 480	3011	-3	688	769	3	7 594	477	3	17.	573	-10 2	309	432		320	437	-4 1	310	001		***	650 679	1	350	433
	9 571 1 318		10 30	110		5 405	521	-i	1342	1 342	:	201	779	-	1202	1041	-0 2	590	761	33	334	518	-	215	193		697	761		413 350	351
-7 5 2	7 783	į	1 74	1 787	ô	7 1060	582	-	374	405	-	8 395 8 829 7 706	875	3	9997	485		463	*10	-5 9	355	420		793	740		•75	435		•0.	517
	3 354	į	; :		ů,	3 610	375	-1	1071	984		279	274	-	204	326	-6 1	236	1187	-	226	243	0 0	257	330				-3	201	
-7 1 64	5 643	,	4 23	* ***	4	x 1020	1.144							-, ,	, ,,,	-11-	,			-, 0		200									

Results and Discussion

Composition. As outlined in the Experimental Section, Fe and C_2H_5 analyses as well as nmr results indicate a 1:2 adduct, $[(h^5-C_5H_5)Fe(CO)_2]_2 \cdot 2Al(C_2H_5)_3$, this composition is confirmed by results of a tensimetric titration with trimethyl amine which show that two moles of trimethyl amine are consumed per mole of adduct in accord with the following displacement reaction (eq. 1)

$$[(h^{5}-C_{3}H_{3})Fe(CO)_{2}]_{2} \cdot 2A1(C_{2}H_{3})_{3} + 2N(CH_{3})_{2}$$

$$\rightarrow 2A1(C_{3}H_{3})_{3} \cdot N(CH_{3})_{2} + [(h^{5}-C_{3}H_{3})Fe(CO)_{2}]_{2}$$
(1)

Furthermore, quantitative regeneration of the parent iron complex is observed when this reaction is monitoret in heptane solution by infrared absorption in the CO stretch region. Similarly the compound $[(h^5-C_5H_5)Fe (CO)_2$ $\frac{1}{2} \cdot 2Al(CH_3)_3$ was synthesized on the vacuum line (1.98 trimethylaluminum per iron dimer determined by weight gain and 18.4% CH₃ by hydrolysis; calc. 18.1%).15 During formation of the trimethylaluminum adduct, the reaction tube was constantly monitored for non-condensable gases such as CO, with negative results. Despite the high reactivity of these adducts and the associated difficulty of analysis, their composition is established beyond reasonable doubt. The indication of dissociation from spectral measurements and removal of trithylaluminum from the adduct by trimethylamine demonstrate weak nature of the bridging carbonyl trithylaluminum interaction.

(15) This adduct readily loses trimethylaluminum under vacuum and because of this complication it was not chosen for the structural work.

Structure. The most important result of the determination is coordination of trithylaluminum to the oxygens of the bridging carbonyls (Figure 1). The Al-O distance 1.98(2) Å is close to the value 2.02(2) Å observed for the donor-acceptor bond in the bistrimethylaluminum-dioxane adduct,¹⁵ but is significantly longer than the Al-O distance of 1.89 Å in [Al-

Figure 1. The structure of $[(h^5C_3H_3)Fe(CO)_2]_2$. 2Al(C₂H₃)₃. Ethyl groups and hydrogen atoms have been omitted from the figure to improve clarity. Fe and Al were refined anisotropically while C and O were refined with isotropic thermal parameters. Primed atoms are related to unprimed atoms by a two-fold axis. The Fe-Fe bond, which is required by simple valence considerations, has been omitted for clarity.

(16) J.L. Atwood and G.D. Stucky, J. Amer. Chem. Soc., 89, 5362 (1967).

 $(H_2O)_6]^{3+}$,¹⁷ and 1.82 Å in AlCl₃ · C₆H₄COCl.¹⁸ The Al-O-C bond is bent (155°) in a fashion similar to that found AlCl₃ · C₆H₄COCl. The Al-C bond distances with range between 1.89(3) and 2.07(4) Å are comparable to the average value of 1.97 Å the adduct

Al($\hat{C}H_3$)₃C₄H₈O₂.¹⁶ Thus, the structural features are consistent with relatively weak donor-acceptor interaction between the oxygen end of carbon monoxide and trithylaluminum. Within the calculated standard deviations, the Fe, C_b, O_b and Al atoms lie in a plane.¹⁹ Whether the position of the aluminum atom is primarily determined by bonding or packing forces is unknown, however, it is consistent with that expected for disposition of the lone pairs:

Recently the structure of $cis[(h^5-C_5H_5)Fe(CO)_2]_2$ has been determined²⁰ and that of the trans isomer has been redetermined with high accuracy.²¹ Little difference was found between the molecular dimensions of the forms. The present results are less accurate than those of the parent isomers because our data set, which is more limited, was collected on film rather than on a diffractometer and because of disorder of the ethyl groups in our compounds. The Fe-Fe bond distance (Table II) is 0.04 Å shorter in the adduct which is significantly greater than the combined standard deviation for the two structures (0.008 Å).²²

- (18) S.R. Rasmusse nand N.C. Bioth, Acta Chem. Count, 21, (1966). (19) Distances and standard deviations, (), from the least squares res plane as defined by W.C. Hamilton (*Acta Cryst.*, 14, 185 (1961)) are Fe 0.000(3), C_b -0.001(2), O_b 0.003(1), and AI -0.001(10) λ . (20) R.F. Bryan, P.T. Greene, M.J. Newlands, and David S. Field, J. Chem. Soc., A, 3068 (1970). (21) R.F. Bryan and P.T. Greene, *ibid.*, 3064 (1970).

Another small, but apparently significant difference is an increase in the dihedral angle between the two Fe_2C_b planes from 164° in the parent to 167(1)° in the adduct. All other differences between the parent and the adduct fall close to or within the standard deviations and therefore cannot be considered significant. As with the inferences from chemical information and the Al-O bond length, the small perturbation of the $[(h-C_5H_5)Fe(CO)_2]_2$ moiety indicates weak donor-acceptor interaction in the adduct.

Stability. The $[(h^5-C_5H_5)Fe(CO)_2]_2 \cdot 2AlEt_3$ adduct although susceptible to easy removal of triethylaluminum is stable in the solid state for at least several months. This stability contrast with the behaviour of organic carbonyls in the presence of aluminum alkyls. For example, the benzophenone-trimethylaluminum complexundergoes an irreversible fist order addition across the CO bond (eq. 2) with a half life of 48 minutes at 25°C.23,24

(2) $(C_{6}H_{5})_{2}COAl(CH_{3})_{3} \rightarrow (C_{6}H_{5})_{2}C(CH_{3})OAl(CH_{3})_{2}$

Acknowledgement. This research was supported by the NSF, and the Advanced Research Projects Agency through the Northwestern University Materials Research Center. We thank Professor J.A. Ibers for the use of his program library and many helpful discussions. D.F. Shriver thanks Drs. B. Frenz and W. Bonds for aid with some of the crystallographic programs.

⁽¹⁷⁾ Y. Okaya, M.S. Ahmed, R. Pepinsky, and V. Vand, Z. Krist., 109, 367 (1957).
(18) S.R. Rasmusse nand N.C. Broch, Acta Chem. Scand., 20, 1351 (1966)

⁽²²⁾ No difference in the Fe-Fe distance for the adduct is obtained when a riding model for thermal motion is assumed. (23) E.C. Ashby, J. Lacmmle, and H.M. Neumann, J. Amer. Chem. Soc., 90, 5179 (1968). (24) Since completion of this manuscript on Al-OC distance of 1.83 $\hat{\lambda}$ has been reputed for $\Lambda[[W(CO)_2C_3H_3]_3(C_4H_3O)_3]$: R.B. Peterson, 1.4 Structure of the state of the state

^{1.1.} Stezowski, C. Wan, J. Burlitch and R.E. Hughes, J. Amer. Chem. Soc., 93, 3532 (1971).